References

- Fait, J. (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Ng, S. W., Chin, K. L., Chen, W., Kumar Das, V. G. & Mak, T. C. W. (1989). J. Organomet. Chem. **365**, 207–214.
- Ng, S. W. & Kumar Das, V. G. (1993). J. Crystallogr. Spectrosc. Res. 23, 925–928.
- North, A. C. T., Phillips, A. C. T. & Mathews, F. S. (1968). Acta Cryst. A24, 351-358.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Spek, A. L. (1994). *PLUTON. Molecular Graphics Program.* University of Utrecht, The Netherlands.
- Zsolnai, L. & Pritzkow, H. (1994). ZORTEP. Interactive Graphics Program. University of Heidelberg, Germany.

Acta Cryst. (1996). C52, 1371-1373

[(N,N-Dimethylthiocarbamoylthio)acetato]trimethyltin

SEIK WENG NG^a and V. G. KUMAR DAS^b

^aInstitute of Advanced Studies, University of Malaya, 59100 Kuala Lumpur, Malaysia, and ^bDepartment of Chemistry, University of Malaya, 59100 Kuala Lumpur, Malaysia. E-mail: h1nswen@cc.um.edu.my

(Received 8 August 1995; accepted 8 February 1996)

Abstract

Carboxy bridges link the independent molecules of the title compound, *catena*-poly[trimethyltin- μ -(N,N-dimethylthiocarbamoylthio)acetato-O:O'], [Sn-(C₅H₈NO₂S₂)(CH₃)₃], in a linear chain along the x axis; both five-coordinate Sn atoms (two independent molecules in the asymmetric unit) show *trans*-trigonal bipyramidal coordination.

Comment

[(*N*,*N*-Dimethylthiocarbamoylthio)acetato] trimethyltin and [(*N*,*N*-dimethylthiocarbamoylthio)acetato]triphenyltin are predicted to adopt helical chain structures on the basis of variable-temperature ^{119m}Sn Mössbauer measurements (Ng & Kumar Das, 1991), and the assignment for the triphenyltin ester, which propagates by twofold screw axes, has been been confirmed recently (Ng & Kumar Das, 1995).

[(N, N-Dimethylthiocarbamoylthio) acetato] trimethyltin, (I), crystallizes as two symmetry-independent molecules linked by carboxylate bridges into a chain, which propagates by translations along x. Both Sn atoms show *trans*-C₃SnO₂ trigonal bipyramidal coordination and bond dimensions involving the Sn atoms compare well with those found in other carboxylate-bridged trimethyltin esters (Ng, Chen & Kumar Das, 1988; Tiekink, 1991). Trimethyltin acetate, trimethyltin trifluoroacetate (Chih & Penfold, 1973) and trimethyltin thiophene-2-carboxylate (Sandhu, Verma & Tiekink, 1990) propagate by glides to give rise to zigzag chains. The furan-2-carboxylate (Tiekink, Sandhu & Verma, 1989) and substituted benzoates (Holmes, Day, Chandrasekhar & Holmes, 1986; Smith, Day, Chandrasekhar, Holmes & Holmes, 1986) propagate by twofold screw axes to form stretched helical chains. The (N,N-dimethylthiocarbamoylthio)acetate only propagates by translations and forms more of a zigzag than a helical chain.

The C—O bond distances in the carboxylate anion of molecule A are differentiated into single- and doublebond distances [C—O 1.265 (4), C=O 1.231 (4) Å]; the anion forms a covalent [2.234 (2) Å] bond to the Sn1A and a bridge [2.433 (2) Å] to the Sn1B atoms. On the other hand, those in molecule B are equal [C—O 1.257 (4), C=O 1.250 (4) Å] and the covalent bonding [2.205 (2) Å] and bridging [2.363 (2) Å] bond distances involving this anion are relatively equal. A similar isobidentate/anisobidentate bonding mode has been documented for the formate anion in the two independent molecules of triphenyltin formate (Molloy, Quill & Nowell, 1987).

Other bond dimensions of the carboxylate anion are similar to those found in the tris(hydroxymethyl)methylammonium (Ng, 1995) and hydrated dicyclohexylammonium (Ng, 1992) salts.

Fig. 1. Atomic labelling scheme for the two independent molecules of the title compound. Displacement ellipsoids are plotted at the 70% probability level.

$[Sn(C_5H_8NO_2S_2)(CH_3)_3]$

Experimental		C4A 1.0242 (3) C5A 0.9153 (5)		0.3344 0.4014	(3) 0.2406 (3) (5) 0.2154 (6)	0.0483 (7) 0.083 (2)
The title compound was synthesized from trimethyltin chloride and sodium $(N,N-dimethylthiocarbamoylthio)$ acetate (Ng & Kumar Das, 1991), and crystals were grown from its solution		C6A C7A C8A Sn1B S1B	0.8695 (3) 0.9847 (7) 0.8020 (8) 0.79145 (2) 0.3831 (1)	0.6129 0.7236 0.7897 0.16842 -0.15048	(3) 0.2130 (3) (6) 0.1087 (8) (5) 0.2064 (7) 2 (2) 0.33868 (2) 8 (7) 0.35545 (7)	0.0481 (7) 0.096 (2) 0.095 (2) 0.04185 (7) 0.0491 (2)
in etnanoi.		S2B O1B O2B	0.3661 (1) 0.6138 (2) 0.4638 (2)	-0.1670 0.0559 0.1423	0 (8) 0.10749 (8) (2) 0.3695 (2) (2) 0.2928 (2)	0.0563 (2) 0.0438 (5) 0.0518 (5)
Crystal data		N1 <i>B</i>	0.3823 (3)	-0.3391	(2) 0.1895 (2)	0.0518 (6)
$[Sn(C_5H_8NO_2S_2)(CH_3)_3]$	Mo $K\alpha$ radiation	C1 <i>B</i>	0.7676 (5)	0.3321	(4) 0.4388 (4)	0.066(1)
$M_r = 342.04$	$\lambda = 0.71073 \text{ \AA}$	C2B	0.7141 (5)	0.0847	$\begin{array}{ccc} (4) & 0.1559(3) \\ (5) & 0.4349(5) \end{array}$	0.0586 (9)
Triclinic	Cell parameters from 25	C3B C4B	0.9448 (5)	0.1090	(3) 0.4349(3) (3) 0.3350(3)	0.0405 (6)
PĪ	reflections	C5B	0.3636 (4)	-0.0110	(3) 0.3521 (3)	0.0467 (7)
$a = 9.761 (2) \text{ Å}_{a}$	$\theta = 14 - 15^{\circ}$	C6B	0.3783 (3)	-0.2280	(3) 0.2087 (3)	0.0418 (6)
b = 12.422(2) Å	$\mu = 2.158 \text{ mm}^{-1}$	C7B	0.3876 (5)	-0.3905	$\begin{array}{ccc} (4) & 0.2796 (4) \\ (4) & 0.0746 (4) \end{array}$	0.0613 (9)
c = 12.486(2) Å	T = 298 K	C8B	0.3799(7)	-0.4100	(4) 0.0746 (4)	0.079(1)
$\alpha = 108.27 (1)^{\circ}$	Block					
$\beta = 101.26 (2)^{\circ}$	0.40 $ imes$ 0.40 $ imes$ 0.25 mm	Table 2. Selected geometric parameters (Å, °)				
$\gamma = 100.02 (2)^{\circ}$	Colourless	Se14 (2 005 (4)	$s_{n1}R_{1}C1R$	2 106 (4)
$V = 1364.3 (4) \text{ Å}^3$		$Sn1A \rightarrow C$	\mathbb{C}^{2A}	2.111 (4)	Sn1B = C2B Sn1B = C2B	2.104 (4)
Z = 4		Sn1A—C	C3A	2.113 (4)	Sn1B—C3B	2.109 (4)
$D_x = 1.665 \text{ Mg m}^{-3}$		Sn1A—0	D1A	2.234 (2)	Sn1 <i>B</i> —O1 <i>B</i>	2.205 (2)
		Sn1A-0	02 <i>B</i>	2.363 (2)	SIB - CSB SIB - C6B	1.788 (3)
Data collection		SIA-C	5A 6A	1.755 (3)	\$2 <i>B</i> —C6 <i>B</i>	1.661 (3)
Enraf-Nonius CAD-4	6548 observed reflections	S2A—C	6A	1.649 (4)	O1 <i>B</i> —C4 <i>B</i>	1.257 (4)
diffractometer	$[I > 2\sigma(I)]$	01 <i>A</i> C	C4A	1.265 (4)	O2B—C4B	1.250 (4)
ω scans	$R_{\rm int} = 0.0313$	02A-C	24A	1.231 (4)	$O2B - Sn1A^{-}$ N1B - C6B	1.333 (4)
Absorption correction:	$\theta_{\rm max} = 29.97^{\circ}$	N1A-C	C6A	1.332 (4)	N1B - C7B	1.454 (5)
ψ scan (North, Phillips	$h = 0 \rightarrow 13$	NIA-C	C7A	1.453 (7)	N1 <i>B</i> —C8 <i>B</i>	1.449 (5)
& Mathews, 1968)	$k = -17 \rightarrow 17$	NIA-C	C8A	1.453 (6)	C4 <i>B</i> —C5 <i>B</i>	1.512 (4)
$T_{\min} = 0.837, T_{\max} =$	$l = -17 \rightarrow 17$	C4A—C	:5A	1.503 (5)		
1.000	3 standard reflections	CIA-S	Sn1A—C2A	127.0 (2)	C1B— $Sn1B$ — $C2B$	126.3 (2)
8375 measured reflections	frequency: 60 min	CIA—S	$\sin 1A - \cos A$ $\sin 1A - \cos A$	923(2)	C1B— $Sn1B$ — $C3BC1B$ — $Sn1B$ — $O1B$	98.2 (1)
7938 independent reflections	intensity decay: 7.4%	CIA—S	$Sn1A - O2B^{i}$	85.3 (2)	C1B—Sn1B—O2A	89.1 (1)
-		C2A—S	Sn1A—C3A	112.8 (2)	C2B—Sn1B—C3B	120.1 (2)
Refinement		C2A—S	Sn1A - O1A $Sn1A - O2B^{i}$	94.0 (1) 91.5 (1)	C2BSn1BO1B C2BSn1BO2A	92.3 (1) 84 5 (1)
Refinement on F^2	$(\Lambda/\sigma)_{\rm max} = -0.001$	C2A—S	Sn1A = O2B Sn1A = O1A	91.3(1)	C3B—Sn1B—O1B	90.7 (2)
$R[F^2 > 2\sigma(F^2)] = 0.0385$	$\Delta q_{max} = 1.806 \text{ e} \text{ Å}^{-3}$	C3A—S	$Sn1A - O2B^{i}$	85.4 (1)	C3B—Sn1B—O2A	84.8 (2)
R[I] > 20(I) = 0.0303 $R(F^2) = 0.0991$	$\Delta \rho_{min} = -0.659 \text{ e} \text{ Å}^{-3}$	01A—5	Sn1A - O2B'	174.44 (8)	O1 <i>B</i> —Sn1 <i>B</i> —O2A	172.49 (8)
S = 1.095	Extinction correction: none	C5A—S	SIA = C6A	101.6(2) 115.4(2)	C3B = S1B = C0B C4B = O1B = Sp1B	102.6 (2)
3 = 1.093 7038 reflections	Atomic scattering factors	C4A-(D2A = Sn1B	138.9 (2)	C4B = O1B = Sn1B $C4B = O2B = Sn1A^{\circ}$	143.5 (2)
355 parameters	from International Tables	C6A—N	N1A—C7A	123.3 (3)	C6B—N1B—C7B	123.3 (3)
H atoms were located and	for Crystallography (1992.	C6A—I	NIA-C8A	120.6 (4)	C6B—N1B—C8B	120.8 (3)
refined with <i>U</i> fixed at	Vol C Tables 4.2.6.8 and	C7A—I	N1A - C8A	116.0 (4)	C/B = N1B = C8B O1B = C4B = O2B	113.9(3)
$0.1 Å^2$	61.1.4)	01A-0	C4A - C5A	119.0 (3)	01 <i>B</i> —C4 <i>B</i> —C5 <i>B</i>	118.5 (3)
$w = 1/[\sigma^2(F_0^2) + (0.0602P)^2]$		02A-(C4A—C5A	117.6 (3)	O2B—C4B—C5B	118.4 (3)
+ 0.1270 <i>P</i>]		C4A—(C5A—S1A	113.8 (3)	C4B - C5B - S1B	117.3 (2)
where $P = (F_c^2 + 2F_c^2)/3$		N1A-4	C64-51A	114.1 (5)	N1B = C0B = S1B N1B = C6B = S2B	12.0(2)
		SIA-C	C6A	123.3 (2)	S1B—C6B—S2B	122.4 (2)

Symmetry codes: (i) 1 + x, y, z; (ii) x - 1, y, z.

pare material for publication: SHELXL93.

(PJP 66/95) for supporting this work.

Data collection: CAD-4 VAX/PC (Enraf-Nonius, 1988). Cell

refinement: CAD-4 VAX/PC. Data reduction: Xtal3.0 (Hall

& Stewart, 1990). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics:

ZORTEP (Zsolnai & Pritzkow, 1994). Software used to pre-

We thank the National Science Council for R&D

(grant No. 2-07-04-06) and the University of Malaya

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

1.4149 (5)

C3A

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$								
	x	v	z	U_{eq}				
Sn 1A	1.28582 (2)	0.23808 (2)	0.24316(2)	0.04002 (7)				
S1A	0.9839(1)	0.52150 (9)	0.1742(1)	0.0657 (3)				
S2A	0.7536(2)	0.5901(1)	0.2885 (2)	0.0956(5)				
01A	1.1347 (2)	0.3446 (2)	0.2024 (2)	0.0526 (6)				
O2A	0.9980 (3)	0.2695 (2)	0.2949 (2)	0.0551 (6)				
NIA	0.8842 (3)	0.7029 (3)	0.1762 (3)	0.0588 (7)				
CIA	1.3384 (6)	0.3335 (5)	0.4231 (4)	0.071(1)				
C2A	1,1313 (5)	0.0765 (4)	0.1495 (5)	0.068 (1)				
		• •						

0.2890 (5)

0.1411 (5)

0.069(1)

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KH1073). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Chih, H. & Penfold, B. R. (1975). J. Cryst. Mol. Struct. 3, 285-297.
- Enraf-Nonius (1988). CAD-4 VAX/PC Fortran System. Operator's Guide to the Enraf-Nonius CAD-4 Diffractometer Hardware, its Software and the Operating System. Enraf-Nonius, Delft, The Netherlands.
- Hall, S. R. & Stewart, J. M. (1990). Editors. Xtal3.0 Reference Manual. Universities of Western Australia, Australia and Maryland, USA.
- Holmes, R. R., Day, R. O., Chandrasekhar, V. & Holmes, J. M. (1986). Unpublished work cited in Smith, Day, Chandrasekhar, Holmes & Holmes (1986).
- Molloy, K. C., Quill, K. & Nowell, I. W. (1987). J. Chem. Soc. Dalton Trans. pp. 101-106.
- Ng, S. W. (1992). J. Crystallogr. Spectrosc. Res. 22, 615-618.
- Ng, S. W. (1995). Z. Kristallogr. 210, 287-289.
- Ng, S. W., Chen, W. & Kumar Das, V. G. (1988). J. Organomet. Chem. 345, 59-64.
- Ng, S. W. & Kumar Das, V. G. (1991). J. Organomet. Chem. 409, 143-156.
- Ng, S. W. & Kumar Das, V. G. (1995). Acta Cryst. C51, 2489-2491.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sandhu, G. K., Verma, S. P. & Tiekink, E. R. T. (1990). J. Organomet. Chem. 393, 195–200.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Smith, P. J., Day, R. O., Chandrasekhar, V., Holmes, J. M. & Holmes, R. R. (1986). Inorg. Chem. 25, 2495–2499.
- Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.
- Tiekink, E. R. T., Sandhu, G. K. & Verma, S. P. (1989). Acta Cryst. C45, 1810-1811.
- Zsolnai, L. & Pritzkow, H. (1994). ZORTEP. Interactive Graphics Program. University of Heidelberg, Germany.

Acta Cryst. (1996). C52, 1373-1375

[3-(Diethylphosphono)propionato]triphenyltin

SEIK WENG NG^a AND V. G. KUMAR DAS^b

^aInstitute of Advanced Studies, University of Malaya, 59100 Kuala Lumpur, Malaysia, and ^bDepartment of Chemistry, University of Malaya, 59100 Kuala Lumpur, Malaysia. E-mail: h1nswen@cc.um.edu.my

(Received 15 August 1995; accepted 8 February 1996)

Abstract

In the title compound, $[Sn(C_7H_{14}O_5P)(C_6H_5)_3]$, the planar triphenyltin cations are axially bridged through the carboxy and phosphoryl O atoms of the 3-(diethyl-

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved phosphono)propionate anions into zigzag chains that run parallel to the *c* axis {*i.e. catena*-poly[triphenyltin- μ -3-(diethylphosphono)propionato- $O:O^{P=0}$]}.

Comment

Triphenyltin alkanoates generally adopt carboxylatebridged structures in which the triphenyltin cations are linked axially by the carboxylate anions into linear chains (Ng, Chen & Kumar Das, 1988; Tiekink, 1991, 1994). A second donor O atom in the carboxylate anion allows the possibility of bridging through this site, a feature that has been documented for (diethylphosphonoacetato)triphenyltin [Sn—O = 2.129 (3), Sn—O = 2.420 (3) Å], which propagates by translations along the *b* axis (Ng & Kumar Das, 1994). The introduction of another methylene linkage in this ester results in no significant differences in the coordination geometry of the Sn atom in the title compound, (I) [Sn—O

= 2.116 (2), Sn \leftarrow O = 2.397 (3) Å]. However, the 3-(diethylphosphono)propionate propagates the chain by a glide along the *c* axis, so that the chain has a zigzag conformation.

Fig. 1. Atomic labelling scheme for the title compound. ZORTEP (Zsolnai & Pritzkow, 1994) displacement ellipsoids are plotted at the 50% probability level.